SYNTHESIS OF SOME BIOLOGICALLY ACTIVE PYRAZOLE, THIAZOLIDINONE, AND AZETIDINONE DERIVATIVES

R. B. Pawar and V. V. Mulwad

Pyrazole, thiazolidinone, and azetidinone derivatives were synthesized from chalcones of 4-hydroxycoumarin. The structures of all the synthesized compounds were confirmed on the basis of spectral and analytical data. The compounds were screened in vitro for their antibacterial activity against various bacterial strains.

Keywords: azetidinones, biologically active pyrazoles, thiazolidinones.

1-Benzopyran-2-(2H)-ones are well known for their various biological activities [1, 2]. Pyrazoles and several N-substituted pyrazoles are known to possess neuroleptic [3], analgesic and anti-inflammatory, antipyretic [4], antiarrhythmic [5], sedative-hypnotic effect [6], and antimicrobial activity [7]. They are inhibitors and deactivators of liver alcohol dehydrogenase [8], while 3,5-substituted pyrazoles are known for hypoglycemic activity [4] in glucose primed and diabetic rats. 4-Thiazolidinones have been reported to demonstrate a wide range of pharmacological activities such as hypnotic-sedative, analgesic activity, anticonvulsant [9], antifungal [10], antibacterial [11], and antitubercular activity against *M. tuberculosis* $H_{37}Rv$ [12]. β -Lactamase is generally considered to be responsible for microbial resistance against a broad spectrum of β -lactam antibiotics [13].

In continuation of our work [14] we report here for the first time on the synthesis of some dihydropyrazole, thiazolidinone, and azetidinone derivatives, and on estimation of their biological properties. For this purpose chalcones of 4-hydroxy-1-benzopyran-2-(2H)-one and 3-(2H-4-hydroxy-2-oxobenzopyran-3-yl)- ω -arylethenyl ketones **1a**,**b** were treated with hydrazine hydrate in the presence of piperidine to yield dihydropyrazole derivatives **2a**,**b**. The ¹H NMR spectrum of compound **2a** showed the presence of a doublet at δ 1.95 (J = 7 Hz) for two protons at C(4) and a triplet at δ 2.48 for one proton at C(5). It showed the presence of a singlet at δ 3.68 for three protons of OCH₃ along with signals at 7.18–8.41 for eight aromatic protons. It also exhibited singlets at δ 8.74 and 10.04 for one proton each for the N–H and O–H groups, which were D₂O exchanged. Dihydropyrazoles **2a**,**b** were treated with chloroacetyl chloride in the presence of triethylamine in 1,4-dioxane to give N-chloroacetyl derivatives **3a**,**b**. The ¹H NMR spectra of **3a**,**b** did not show the signal at δ 8.74 for N–H, but a singlet at δ 4.11 for two protons of CH₂–CI was present along with other signals. Chlorides **3a**,**b** were treated with hydrazine hydrate in ethanol in the presence of piperidine to give N-acetylhydrazines **4a**,**b**. The ¹H NMR spectra of **4a** and **4b** showed a signal at δ 4.46 for two protons of CH₂–NH and a broad signal at δ 4.30 for two protons of NH₂ and δ 8.50 for one proton of NH, which are D₂O exchanged. Compounds **4a**,**b** when treated with benzaldehyde gave the corresponding hydrazones **5a**,**b** which

Department of Chemistry, The Institute of Science, 15, Madam Cama Road, Mumbai 400 032, India; e-mail: vinata_mulwad@indiatimes.com, roops_pawar@hotmail.com. Published in Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 257-264, February, 2004. Original article submitted December 26, 2002.

Scheme 1

2–7 a R = OMe, **2–7 b** R = H

Com- pound	IR spectra, v, cm ⁻¹ , KBr	¹ H NMR spectra (δ, ppm), DMSO-d ₆ (<i>J</i> , Hz)	¹³ C NMR spectra (δ, ppm), DMSO-d ₆	Mass spectra, m/z (%)
1	2	3 4		5
2a	3426 (O–H and N–H), 2927 (C–H), 1724 (C=O), 1620 (C=N), 1544, 1440, 1373, 1257, 1027, 778	1.95 (2H, d, <i>J</i> = 7, 4-, 4-H ₂); 2.48 (1H, t, 5-H, CH–NH), 3.68 (3H, s, OCH ₃); 7.18 (1H, d, <i>J</i> = 6, 8-H); 7.40 (2H, d, <i>J</i> = 8, 2'- and 6'-H); 7.59 (2H, d, <i>J</i> = 8.5, 3'- and 5'-H); 7.80 (1H, d, <i>J</i> = 7.5, 5-H), 8.11 (1H, t, 6-H); 8.41 (1H, t, 7-H); 8.74 (1H, s, NH, D ₂ O exchanged); 10.04 (1H, s, OH, D ₂ O exchanged)	41.3 (C(4)), 53.8 (OCH ₃), 56.1 (C(5), 100.2 (C(3)), 111.9 (C(10)), 116.4 (C(2')), 118.2 (C(8)), 119.9 (C(6')), 127.6 (C(5)), 128.6 (C(6)), 132.7 (C(7)), 136.0 (C(3')), 137.1 (C(1')), 151.2 (C(9)), 154.3 (C-4')), 158.1 (C(3)), 162.0 (C(4)), 166.2 (C(2))	M ⁺ 336 <i>m/z</i> 319, 305, 292, 280, 265, 254, 240, 223, 216, 200, 185, 176, 161, 152, 144, 135, 121, 105, 91, 77, 65,43, 42
2b	3420 (O–H and N–H), 2928 (C–H), 1723 (C=O), 1614 (C=N), 1511, 1459, 1380, 1250, 1177, 1031, 823	1.90 (2H, d, <i>J</i> = 7, 4-, 4-H ₂); 42 (1H, t, 5-H); 7.05 (3H, m, 3'-, 4'- and 5'-H); 7.32 (2H, d, <i>J</i> = 8.5, 2'- and 6'-H); 7.50 (1H, d, <i>J</i> = 7, 8-H); 7.67 (1H, t, 6-H); 7.80 (1H, d, <i>J</i> = 7, 5-H); 8.60 (1H, s, NH, D ₂ O exchanged); 10.40 (1H, s, OH, D ₂ O exchanged)	42.0 (C(4)), 51.2 (C(5)), 103.9 (C(3)), 111.9 (C(10)), 117.0 (C(2')), 118.2 (C(8)), 119.8 (C(6')), 120.9 (C(2')), 124.0 (C(6')), 127.4 (C(5)), 128.6 (C(6)), 132.5 (C(7)), 136.0 (C(3')), 137.0 (C(5')), 145.0 (C(1')), 151.2 (C(9)), 158.0 (C(3)), 163.6 (C(4)), 166.8 (C(2))	M ⁺ 306, <i>m</i> /z 278, 270, 229, 221, 207, 201, 175, 161, 145, 133, 121, 104, 90, 85, 77, 67, 57
3a	3300 (OH), 2959 (CH), 1707 (C=O), 1621 (C=N), 1510, 1447, 1253, 1099, 1027, 806	2.01 (2H, d, $J = 6$, 4-, 4-H ₂); 2.50(1H, t, H(5)), 3.56 (3H, s, OCH ₃); 4.11 (2H, s, CI-CH ₂ -C=O); 6.49 (2H, d, $J = 6$, 2'- and 6'-H); 6.73 (1H, t, 6-H), 6.91(1H, t, 7-H); 7.13(1H, d, $J = 7$, 8-H); 7.16 (2H, d, $J = 6$, 3'- and 5'-H); 7.39 (1H, d, J = 6, 5-H); 10.92 (1H, s, OH, D ₂ O exchanged)	43.0 (C(4)), 54.2 (OCH ₃), 57.7 (C(5)), 61.0 (Cl- <u>C</u> H ₂ -C=O), 100.5 (C(3)), 111.0 (C(10)), 116.5 (C(2')), 118.2 (C(8)), 119.9 (C(6')), 127.6 (C(5)), 128.6 (C(6)), 132.7 (C(7)), 136.0 (C(3')), 137.1 (C(1')), 151.2 (C(9)), 154.3 (C(4')), 158.1 (C(3), 162.0 (C(4)), 166.2 (C(2)), 169.1 (N-C=O)	M ⁺ 412, M ⁺² 414, <i>m/z</i> 384, 353, 335, 323, 305, 290, 268, 251, 237, 223, 204, 175, 161, 144, 121, 107
3b	3432 (OH), 3017 (CH), 1721 (>C=O), 1623 (C=N), 1553, 1442, 1249, 1136, 1111, 996, 833	2.20 (2H, d, $J = 6.5$, 4-, 4-H ₂); 2.75 (1H, t, 5-H); 4.15 (2H, s, CH ₂ -C=O); 6.60 (2H, t, 6- and 7-H); 6.75 (1H, d, $J = 7$, H-8); 6.85 (1H, d, $J = 7.5$, 5-H); 7.15 (2H, d, $J = 7$, 2'- and 6'-H); 7.35 (3H, m, 3'-, 4'-H and 5'-H); 10.40 (1H, s, OH, D ₂ O exchanged)	$ \begin{array}{l} 41.2 \ ({\rm C}(4)), 56.0 \ ({\rm C}(5)), 61.0 \ ({\rm C}{\rm I}{\rm -C}{\rm H}_2{\rm -C}{\rm =}{\rm O}), 99.5 \\ ({\rm C}(3)), 111.9 \ ({\rm C}(10)), 117.2 \ ({\rm C}(2')), 118.2 \ ({\rm C}(8)), \\ 119.8 \ ({\rm C}(6')), 120.9 \ ({\rm C}(3')) \ {\rm and} \ {\rm C}(5')), 127.5 \ ({\rm C}(5)), \\ 128.6 \ ({\rm C}(6)), 132.6 \ ({\rm C}(7)), 136.0 \ ({\rm C}(4')), 137.1 \\ ({\rm C}(1')), 151.2 \ ({\rm C}(9)), 158.0 \ ({\rm C}(3)), 161.8 \ ({\rm C}(4)), \\ 163.5 \ ({\rm C}(2)), 166.9 \ ({\rm N}{\rm -C}{\rm =}{\rm O}) \end{array} $	M ⁺ 382, M ⁺² 384, <i>m/z</i> 354, 339, 315, 305, 276, 270, 247, 227, 221, 207, 199, 175, 161, 145, 133, 121, 105, 90, 85, 77, 67, 56

TABLE 1. Spectral Data of Compounds 2a,b-7a,b

TABLE 1	(continued)	
---------	-------------	--

1	2	3	4	5
4a	3433 (OH, NH and NH ₂), 2955(CH), 1727 (C=O), 1617, 1541, 1444, 1378, 1259, 1159, 1115, 992, 778	2.34 (2H, d, $J = 6$, 4,- 4-H ₂); 2.77 (1H, t, 5-H); 3.48 (3H, s, OCH ₃); 4.30 (2H, b, NH ₂); 4.46 (2H, s, CH ₂ -C=O); 7.06 (2H, d, $J = 8.5$, 2'- and 6'-H); 7.10 (1H, t, 6-H); 7.27 (1H, t, 7-H); 7.90 (2H, d, $J = 7.5$, 3- and 5'-H); 7.82 (1H, d, $J = 7$, 8-H); 8.00 (1H, d, $J = 7.5$, 5-H); 8.50 (1H, s, NH, D ₂ O exchanged); 10.42 (1H, s, OH, D ₂ O exchanged)	43.2 (C(4)), 54.7 (OCH ₃), 56.9 (C(5)), 58.9 (NH– <u>C</u> H ₂ –C=O), 104.1 (C(3)), 111.5 (C(10)), 118.0 (C(8)), 120.7 (C(6')), 120.8 (C(2')), 123.9 (C(5)), 124.3 (C(6)), 132.2 (C(7)), 137.6 (C(3') and C(5')), 140.5 (C(1')), 150.0 (C(9)), 154.0 (C(4'), <u>C</u> –OCH ₃), 159.4 (C(3)), 163.4 (C(4)), 164.6 (C(2)), 170.0 (N–C=O)	M ⁺ 408, <i>m/z</i> 380, 35 331, 305, 287, 270, 247, 241, 227, 221, 175, 161, 133, 121, 104, 90, 84, 77, 67, 5
4b	3420 (OH, NH and NH ₂), 2928 (CH), 1725 (>C=O), 1613, 1511, 1459, 1250, 1177, 1031, 823	2.10 (2H, d, <i>J</i> = 6, 4-, 4-H ₂); 2.42 (1H, t, 5-H, CH–NH); 4.20 (2H, b, NH ₂); 4.45 (2H, s, CH ₂ –C=O); 7.04 (2H, d, <i>J</i> = 8.5, 6- and 7-H); 7.25 (1H, d, 8-H); 7.49 (3H, m, 3'-H, 4'- and 5'-H); 7.75 (1H, d, <i>J</i> = 7, 5-H); 8.00 (2H, d, 2'- and 6'-H); 8.80 (1H, s, NH, D ₂ O exchanged); 10.43 (1H, s, OH, D ₂ O exchanged)	42.0 (C(4)), 56.8 (C(5)), 60.0 (Cl– <u>C</u> H ₂ –C=O), 98.8 (C(3)), 112.0 (C(10)), 117.3 (C(2')), 118.3 (C(8)), 119.9 (C(6')), 121.0 (C(3') and C(5')), 127.5 (C(5)), 128.6 (C(6)), 132.6 (C(7)), 135.9 (C(4')), 137.0 (C(1')), 151.3 (C(9)), 158.0 (C(3)), 161.9 (C(4)), 163.6 (C(2)), 167.0 (N–C=O)	
a	3479 (OH and NH), 2877 (CH), 1719 (>C=O), 1623, 1556, 1453, 1313, 1213, 999, 784	2.09 (2H, d, $J = 8$, 4-, 4-H ₂); 2.75 (1H, t, 5-H); 3.48 (3H, s, OCH ₃); 4.33 (2H, s, CH ₂ –C=O); 6.55 (1H, s, N=CH–Ph); 7.02 (2H, d, $J = 7.5$, 2"- and 6"-H); 7.07 (3H, m, 3"-, 4"- and 5"-H); 7.19 (2H, d, $J = 9$, 2'- and 6'-H); 7.34 (2H, t, 6- and 7-H); 7.45 (1H, d, $J = 7.5$, 8-H); 7.57 (1H, d, $J = 7$, 5-H); 7.69 (2H, d, $J = 8$, 3'- and 5'-H); 8.27 (1H, s, NH, D ₂ O exchanged), 10.30 (1H, s, OH, D ₂ O exchanged)	42.5 (C(4)), 52.9 (OCH ₃), 53.9 (C(5)), 55.4 (NH– <u>C</u> H ₂ –C=O), 98.1 (C(3)), 111.5 (C(10)), 112.2 (C(3") and C(5")), 117.3 (C(4")), 118.0 (C(8)), 120.7 (N=CH–Ph), 120.8 (C(2'), C(6), C(2") and C(6")), 123.9 (C(5)), 124.3 (C(6)), 132.2 (C(7)), 137.6 (C(3') and C(5')), 140.5 (C(1')), 152.0.0 (C(9)), 154.2 (C(4')), 159.4 (C(3)), 160.0 (C(4)), 165.0 (C(2)), 172.0 (N–C=O)	
5b	3440 (OH and NH), 3081 (CH), 1711 (>C=O), 1613, 1546, 1438, 1380, 1207, 1135, 1021, 824	2.05 (2H, d, $J = 8$, 4-, 4-H ₂); 2.49 (1H, t, 5-H); 4.38 (2H, s, CH ₂ -C=O); 6.60 (1H, s, N=CH-Ph); 7.35 (2H, t, 6- and 7-H); 7.57 (3H, m, 3"-, 4"- and 5"-H); 7.73 (2H, d, $J = 8.5$, 2"- and 6"-H); 8.00 (3H, m, 3'-, 4'- and 5'-H); 8.25 (3H, d, $J = 8.5$, 2'-, 6'- and 8-H); 8.55 (1H, d, $J = 7$, 5-H); 9.04 (1H, s, NH, D ₂ O exchanged); 10.41 (1H, s, OH, D ₂ O exchanged)	41.3 (C(4)), 53.8 (OCH ₃), 56.1 (C(5)), 59.9 (NH–CH ₂ –C=O), 100.2 (C(3)), 111.9 (C(10)), 116.4 (C(2) and C(6')), 118.2 (C(8)), 119.9 (C(2") and C(6")), 121.0 (N=CH–Ph), 127.6 (C(5)), 128.6 (C(6)), 132.7 (C(7)), 136.0 (C(3'), C(4') and C(5')), 137.1 (C(3"), C(4") and C(5")), 140.2 (C(1') and C(1")), 151.2.0 (C(9)), 158.1 (C(3)), 162.0 (C(4)), 166.2 (C(2)), 169.1 (N–C=O)	M ⁺ 466, <i>m</i> /z 434, 300 280, 251, 238, 228, 204, 190, 175, 145, 135, 121, 105, 91, 77 43

TABLE 1	(continued)
---------	-------------

1	2	3	4	5
-	_	~		
6a	3464 (OH and NH), 2897 (CH),	2.31 (2H, d, <i>J</i> = 7, 4-, 4-H ₂); 2.76 (1H, t, 5-H); 3.48	41.6 (N–CH–S), 45.1 (C(4)), 53.5 (OCH ₃), 55.4	M ⁺ 570, <i>m/z</i> 550, 493,
	1710 (>C=O), 1607, 1511, 1442,	(3H, s, OCH ₃); 3.73 (2H, s, S–CH ₂ –C=O); 4.53 (2H,	$(C(5)), 59.0 (S-CH_2-C=O), 62.5 (NH-CH_2-C=O), 120.0 (S-CH_2-C=O), 120.0 (S-CH_2-C$	450, 392, 361, 284,
	1251, 1176, 1031, 829	s, N-CH ₂ -C=O); 4.90 (1H, s, N-CH-S); 6.82 (2H, d,	102.8 (C(3)), 111.5 (C(10)), 112.2 (C(2'), C(6'), C(3)))	252, 232, 204, 190,
		$J = 1.5, 2^{-1}$ and 6'-H); 6.8/ (2H, d, $J = 1.5, 2^{-1}$ and	$C(2^{m})$ and $C(6^{m})$, 117.3 ($C(3^{m})$, $C(4^{m})$ and $C(5^{m})$),	175, 144, 134, 115,
		6^{-} -H); /.00 (2H, d, $J = /, 3^{-}$ and 5^{-} H); /.1/ (1H, t,	(C(7)) 127.7 (C(2)) and C(5)), 124.3 (C(6)), 132.2	105, 91, 77
		(1 - 7, 2, 1); 7.76 (11 + 7, 11); 2.06 (11 + 7, 12); 7.58 (11, 0, 1-7, 2, 11); 7.76 (11 + 7, 11); 2.06 (11 + 7, 12); 7.76 (11 + 7, 12); 2.06 (11 + 7, 12); 7.76 (11 + 7, 12); 2.06 (11 + 7, 12); 7.76 (1	(C(7)), 157.7 (C(3)) and C(5)), 140.5 (C(1)) and C(1)) 150.2 (C(0)) 152.2 (C(4)) C OCH (158.0)	
		J = 7, 8-10, 7.70 (11, 1, 7-10), 8.00 (11, 0, J = 8, 5.10) + 8.67 (111, 3.00) + 10.52 (111)	$C(1)$, 150.2 $C(9)$, 152.2 $C(4)$, <u>C</u> = $O(H_3)$, 158.0 $C(2)$ 162.4 $C(4)$ 163.0 $C(2)$ 166.0 $C(2)$	
		S-H, 8.07 (1H, S, NH, D ₂ O exchanged), 10.52 (1H, S, OH, D ₂ O exchanged)	(C(3)), 102.4 (C(4)), 103.0 (C(2)), 100.0 (S-C-O), 172.0 (N-C=O)	
6h	3431 (OH and NH) 2928 (CH)	$1.99 (d 2H I = 7.4 (A-H_2)) \cdot 2.53 (1H + 5-H) \cdot 3.80$	41.9 (N=CH=S) 45.5 (C(4)) 53.3 (C(5))	
00	1727 (C=0) 1607 1542 1445	$(2H \le S-CH_2-C=0)$: 4 42 (2H \le N-CH_2-C=0):	41.9 (N-CH-3), 43.3 (C(4)), 53.3 (C(5)), 56.8 (S-CH-C=0) 61.0 (NH-CH-C=0) 99.0	
	380 1260 1159 1023 779	4.80(1H s N-CH-S); 7.42(2H, 3, 14 CH ₂ C O),	(C(3)) 111 9 $(C(10))$ 117 2 $(C(2'))$ and $C(6')$ 118 2	
	500, 1200, 1159, 1025, 779	5'-H): 7.72 (2H, d, $J = 7.5$, 2'- and 6'-H): 8.00 (2H.	(C(8)), 119, 8 (C(2'')) and C(6''')), 127.5 (C(5)), 128.6	
		m. 6- and 7-H): 8.20 (1H. d. $J = 7$. 8-H): 8.40 (3H. m.	(C(6)), 132.6 (C(7)), 136.0 (C(3'), C(4') and C(5')),	
		3"-, 4"- and 5"-H); 8.60 (2H, d, 2"- and 6"-H); 8.80	137.1 (C(3"'), C(4"') and C(5"')), 142.2 (C(1') and	
		$(1H, d, J = 7.5, 5-H); 9.61 (1H, s, NH, D_2O)$	C(1")), 151.3 (C(9)), 158.0 (C(3)), 161.9 (C(4)),	
		exchanged); 10.85 (1H, s, OH, D ₂ O exchanged)	163.6 (C(2)), 166.7 (S-C=O), 170.0 (N-C=O)	
7a	3464 (OH and NH), 2897 (CH),	2.20 (2H, d, $J = 7$, 4-, 4-H ₂); 2.63 (1H, t, 5-H); 3.38	31.6 (N– <u>C</u> H–Ph), 40.5 (Cl– <u>C</u> H–C=O), 45.1 (C(4)),	M ⁺ 572 M ⁺² 574 <i>m</i> / <i>z</i>
	1710 (>C=O), 1607, 1511, 1442,	$(1H, d, J = 6, CI-CH-C=O); 3.55 (3H, s, OCH_3);$	53.5 (OCH ₃), 55.4 (C(5)), 59.0 (S-CH ₂ -C=O), 62.5	550, 495, 464, 434,
	1251, 1176, 1031, 829	4.46 (2H, s, N–CH ₂ –C=O); 4.47 (1H, d, <i>J</i> = 6,	(NH–CH ₂ –C=O), 102.8 (C(3)), 111.5 (C(10)), 112.2	392, 361, 300, 284,
		N–CH–Ar); 6.68 (1H, d, <i>J</i> = 7.5, 8-H); 6.95 (2H, d,	(C(2'), C(6'), C(2"') and C(6"')), 117.3 (C(3"'), C(4"')	251, 232, 204, 190,
		<i>J</i> = 7.5, 2"-H, 6"-H); 7.10 (2H, m, 6- and 7-H); 7.27	and C(5")), 118.0 (C(8)), 123.9 (C(5)), 124.3 (C(6)),	175, 145, 134, 115,
		(3H, t, 3"-, 4"- and 5"-H); 7.49 (2H, d, J = 7.5, 2'- and	132.2 (C(7)), 137.7 (C(3') and C(5')), 140.5 (C(1') and	105, 91, 77, 43
		6'-H); 7.85 (1H, d, <i>J</i> = 7, 5-H); 7.91 (2H, d,	C(1''')), 150.2 (C(9)), 152.2 (C(4')), 158.0 (C(3)),	
		J = 7, 3'- and 5'-H); 8.67 (1H, s, NH, D ₂ O	162.4 (C(4)), 163.0 (C(2)), 166.0 (S–C=O), 172.0	
		exchanged); 10.52 (1H, s, OH, D_2O exchanged)	(N-C=O)	
7b	3433 (OH and NH), 2927 (CH),	$1.80 (2H, d, J = 7, 4-, 4-H_2); 2.60 (1H, t, 5-H);$	29.9 (N– <u>C</u> H–Ph), 39.1 (Cl– <u>C</u> H–C=O), 45.0 (C(4)),	
	1726 (>C=O), 1606, 1541, 1445,	3.40 (1H, d, J = 6, CI-CH-C=O); 4.20 (2H, s,	53.0 (C(5)), 62.3 (NH-CH2-C=O), 102.5 (C(3)),	
	1375, 1261, 1115, 1025, 779	$N-CH_2-C=O$; 4.49 (1H, d, $J=6$, $N-CH-Ph$); 7.05	113.4 ($C(10)$), 114.2 ($C(2')$, $C(6')$, $C(2'')$ and $C(6'')$),	
		(2H, t, 6-H and /-H); /.22 (3H, m, 3'-, 4'- and 5'-H);	$(C(2))$, $C(4)$, (19.3) , $(C(3^{*}))$, $C(4^{*})$ and $C(5^{*})$, 122.8	
		7.50 (1H, u, J = 0, 0 - H), 7.50 (1H, u, J = 7.5, 5 - H);	(C(5), C(4)) and $C(5)), 125.0 (C(5)), 125.4 (C(6)), 123.0 (C(7)), 140.1 (C(1''')), 142.2 (C(1')), 151.1$	
		(511, 111, 52, 42, 410, 521), $(501, 111, 52, 41, 111, 52, 410, 111, 52, 410, 111, 52, 111$	(C(9)) 162 6 $(C(3))$ 164 0 $(C(4))$ 167 3 $(C(2))$	
		$10.51 (1H \text{ s} \text{ OH } \text{D}_2\text{O} \text{ exchanged})$	(C(7)), 102.0 (C(3)), 107.0 (C(7)), 107.0 (C(2)), 172.2 (N-C=0)	

did not show signals at δ 4.46 for NH₂ but showed the presence of a signal at δ 6.55 for one proton of N=CH–Ph. Hydrazones **5a**,**b** on further treatment with either mercaptoacetic acid or chloroacetyl chloride gave thiazolidinones **6a**,**b** or azetidinones **7a**,**b** respectively. The ¹H NMR spectra of **6a**,**b** showed the presence of signals at δ 3.73 for two protons of S–CH₂ and at δ 4.90 for S–CH–N, which confirm the formation of the thiazolidinone ring. Also the ¹H NMR spectra of **7a**,**b** showed the presence of doublets at δ 3.38 (*J* = 6 Hz) for one proton of CI–CH and δ 4.47 (*J* = 6 Hz) for one proton of N–CH–Ph along with other signals, which confirm the formation of the azetidinone ring. The structures of all the above-synthesized compounds are confirmed on the basis of spectral (Table 1) and analytical data (Table 2). All compounds were screened *in vitro* for their antibacterial activity against a variety of bacterial strains (Table 3).

Antimicrobial activity. The minimum inhibition concentration (MIC) was determined using the Tube Dilution method according to the standard procedure [15]. All the compounds were screened *in vitro* for their antimicrobial activity against a variety of bacterial strains such as *Staphylococcus aureus, Salmonella paratyphi*, and *Escherichia coli* (Table 3). The standard drugs used for comparison were ciprofloxacin (MIC 5 μ g/ml), cloxacillin (MIC 10 μ g/ml), and gentamycin (MIC 5 μ g/ml).

The antimicrobial data of the above compounds reveal that compounds having the methoxy group have increased antibacterial activity while azetidinones are found to be more biologically active than thiazolidinones.

Com-	Empirical	-	Found, % Calculated, %	mp, °C	Yield, %	
pound	Iormula	C H N		Ν	1.	
2a	$C_{19}H_{16}N_2O_4$	$\frac{68.10}{67.85}$	<u>8.43</u> 8.33	<u>4.76</u> 4.55	190	75
2b	$C_{18}H_{14}N_2O_3$	$\frac{70.15}{70.58}$	$\frac{4.69}{4.69}$	<u>9.15</u> 9.45	168	70
3a*	$C_{21}H_{17}N_2O_5Cl$	<u>60.87</u> 61.16	$\frac{4.33}{4.12}$	<u>6.85</u> 6.79	238	72
3b * ²	$C_{20}H_{15}N_2O_4Cl$	$\frac{63.10}{62.82}$	$\frac{4.05}{3.92}$	$\frac{7.15}{7.32}$	225	68
4 a	$C_{21}H_{20}N_4O_5$	<u>61.95</u> 61.76	$\frac{5.05}{4.90}$	$\frac{13.85}{13.72}$	256	76
4b	$C_{20}H_{18}N_4O_4$	<u>63.85</u> 63.49	$\frac{4.70}{4.76}$	$\frac{14.90}{14.81}$	265	80
5a	$C_{28}H_{24}N_4O_5$	<u>67.87</u> 67.74	$\frac{4.55}{4.83}$	$\frac{11.36}{11.29}$	213	79
5b	$C_{27}H_{22}N_4O_4$	<u>69.86</u> 69.52	$\frac{4.50}{4.72}$	$\frac{11.86}{12.01}$	226	77
6a* ³	$C_{30}H_{26}N_4O_6S$	<u>63.40</u> 63.15	$\frac{4.65}{4.56}$	$\frac{9.70}{9.82}$	245	67
6b* ⁴	$C_{29}H_{24}N_4O_5S$	<u>64.67</u> 64.44	$\frac{4.23}{4.44}$	$\frac{10.25}{10.37}$	>300	70
7a* ⁵	$C_{30}H_{25}N_4O_6Cl$	$\frac{63.05}{62.93}$	$\frac{4.49}{4.37}$	<u>9.53</u> 9.79	>300	65
7 b * ⁶	C ₂₉ H ₂₃ N ₄ O ₅ Cl	$\frac{64.35}{64.20}$	$\frac{4.15}{4.24}$	$\frac{10.21}{10.33}$	287	63

TABLE 2. Physical and Analytical Data of Compounds 2a,b-7a,b

* Found, %: Cl 9.03. Calculated, %: Cl 9.16.

*³ Found, %: S 5.43. Calculated, %: S 5.61.

*⁴ Found, %: S 5.98. Calculated, %: S 4.81.

*⁵ Found, %: Cl 6.13. Calculated, %: Cl 6.11.

*⁶ Found, %: Cl 6.30. Calculated, %: Cl 6.45.

Compound	Activity, µg/ml		Compound	Activity, µg/ml			
Compound	S. aureus	S. typhi	E. coli	Compound	S. aureus	S. typhi	E. coli
2a	50	50	100	5a	25	50	50
2b	100	100	150	5b	50	100	100
3 a	50	100	50	6a	50	25	100
3b	50	100	100	6b	100	50	100
4 a	50	50	100	7a	25	25	50
4b	100	50	50	7b	50	25	50

TABLE 3. Antibacterial Activity of 2a,b-7a,b

EXPERIMENTAL

Melting points were taken in open capillaries and are uncorrected. IR spectra (v_{max} , cm⁻¹) were recorded on Perkin–Elmer FTIR, and NMR (¹H and ¹³C) were recorded on Bruker AMX (500 MHz) and AC (200 MHz) using TMS as standard. Mass spectra were recorded on Shimadzu GC-MS.

5-Aryl-3-[2H-4-hydroxy-2-oxobenzopyran-3-yl]-4,5-dihydropyrazole (2a,b). Chalcones of 4-hydroxybenzopyran-2-one 1a,b (0.01 mol) and hydrazine hydrate (0.01 mol, 0.5 ml) in the presence of piperidine (1.0 ml) in alcohol were refluxed for 7-8 h. The reaction was monitored on TLC. On the completion of the reaction the reaction mixture was poured onto crushed ice and neutralized with dilute HCI to give a solid product, which was then crystallized from alcohol to afford 2a,b in 70-75% yield.

5-Aryl-1-chloroacetyl-3-[2H-4-hydroxy-2-oxobenzopyran-3-yl]-4,5-dihydropyrazole (3a,b). 5-*p*-Methoxyphenyl-3-[2H-4-hydroxy-2-oxobenzopyran-3-yl]-4,5-dihydropyrazoles **2a**,b (0.01 mol) were taken in hot benzene, and chloroacetyl chloride (0.015 mol, 1.68 ml) was added dropwise. The reaction mixture was stirred at room temperature for 8 h and was then cooled to give a pale yellow solid. This solid was recrystallized from methanol to give **3a**,b in 65-72% yield.

5-Aryl-1-hydrazinoacetyl-3-[2H-4-hydroxy-2-oxobenzopyran-3-yl]-4,5-dihydropyrazole (4a,b). A mixture of compound **3a,b** (0.01 mol) and hydrazine hydrate (0.01 mol, 1.40 ml) in alcohol was refluxed for 7-8 h. The reaction mixture was then poured onto crushed ice to give a solid product, which was then recrystallized from alcohol to give hydrazines **4a,b** in 75-80% yield.

5-Aryl-1-[(benzylidenehydrazino)acetyl]-3-[2H-4-hydroxy-2-oxobenzopyran-3-yl]-4,5-dihydropyrazole (5a,b). An equimolar mixture of hydrazines **4a,b** (0.01 mol) and benzaldehyde (0.01 mol, 1.06 ml) in ethanol (30 ml) containing acetic acid (0.5 ml) was refluxed for 6 h. The excess solvent was distilled off and the residue was poured onto crushed ice to give a solid. The separated solid was filtered off and recrystallized from methanol to give hydrazones **5a,b** in 77-79% yield.

5-Aryl-3-[2H-4-hydroxy-2-oxobenzopyran-3-yl]-1-[(2-phenyl-4-oxothiazolidin-3-ylamino)-acetyl]-4,5-dihydropyrazole (6a,b). A mixture of hydrazones **5a,b** (0.01 mol) and thioglycolic acid (0.02 mol, 1.84 ml) in DMF was refluxed for 12 h. The reaction mixture was cooled and poured into ice-cold sodium bicarbonate solution to remove traces of acid, if any. Finally the solid obtained was filtered off, dried, and recrystallized from alcohol to give **6a,b** in 65-70% yield.

5-Aryl-N-[(3-chloro-2-oxo-4-phenylazetidin-1-ylamino)acetyl]-3-[2H-4-hydroxy-2-oxo-benzopyran-3-yl]-4,5-dihydropyrazoles (7a,b). To the hydrazones 5a,b (0.01 mol) in 1,4 dioxane (40 ml) was added chloroacetyl chloride (0.01 mol, 1.12 ml) and triethylamine (0.01 mol, 1 ml) while stirring at 0-5°C. The reaction mixture was stirred at this temperature for 1 h and then refluxed for 7 h. The excess solvent was removed and the residue was poured onto crushed ice to afford a solid product. The solid was filtered off, washed, and recrystallized from methanol to give 7a,b in 77-82% yield. The authors are thankful to Mumbai University for financial assistance. The authors are grateful to National Facility for High Field NMR, TIFR Mumbai. The authors are also grateful to the Padmaja Occupational Hygiene & Diagnostic Centre, Navi Mumbai, and Prof. Vaidya, Head of the Microbiology Dept., Institute of Science, Mumbai for biological testing. The authors are also thankful to Mr. S. V. Chiplunkar, UDCT, Mumbai for elemental analysis.

REFERENCES

- 1. M. A. Stahmann, M. Ikawa, and K. P. Link, US Pat. 2427579; Chem. Abstr., 42, 603 (1948).
- 2. R. B. Arora and C. N. Mathur, Brit. J. Pharmacol., 20, 29 (1963).
- 3. Burger's Medicinal Chemistry, Wiley, N. Y. (1980), p. 291.
- 4. The Merck Index, ed. M. Windholz, Merck and Co., Rahway, New Jersey, 11th ed. (1989), p. 161.
- 5. R. W. Hamilton, J. Heterocycl. Chem., 13, 545 (1976).
- 6. L. S. Goodman and A. Gilman, *The Pharmacological Basis of Therapeutics*, Macmillan, N. Y. (1980), p. 295.
- 7. K. Ramalingam, G. X. Thyvelikakath, K. D. Berlin, R. W. Chesnul, R. P. Brown, N. N. Durham, S. E. Ealick, and D. Vander Helm, *J. Med. Chem.*, **20**, 847 (1977).
- 8. R. W. Fries, D. P. Bohlken, and B. V. Plapp, J. Med. Chem., 22, 356 (1979).
- 9. E. Ylhan and N. Ergenc, Arch. Pharm. (Weinheim), **325**, 453 (1992).
- 10. N. Cesur, Z. Cesur, N. Ergenc, M. Uzun, M. Kiraz, and O. Kasymodlu, D. Kaya, Arch. Pharm. (Weinheim), **327**, 271 (1994).
- 11. The Merck Index, 11th Edition, 6233 (1989).
- 12. Z. Cesur, H. Guner, and G. Otuk, Eur. J. Med. Chem., 29, 981 (1994).
- 13. Eunhee Kim, Jongsook Bang, Han-Young Kang, Ae Nim Pae, Hun Yeong Kob, and Moon HO Chang, *Korean J. Med. Chem.*, **2**, 45 (1992).
- 14. V. V. Mulwad and R. B. Pawar, Ind. J. Het. Chem., 10, 241 (2001).
- 15. S. Frankle, S. Reitman, and A. C. Sonnenwirth, *Gradwol's Clinical Laboratory Methods and Diagnosis*, **II**, 7th ed., C. V. Mosby Company, Germany (1970), p. 1406.